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Overview
Lawyers and economists have raised concerns that rapid technological development 
in artificial intelligence, consumer data gathering, and e-commerce might facilitate 
and exacerbate anticompetitive behavior. In particular, some predict that algorithmic 
pricing will harm competition and consumers as a result of anticompetitive behavior 
among competitors (e.g., horizontal price fixing), between suppliers and distributors 
(e.g., vertical price fixing), and by individual firms (e.g., price discrimination). The COVID-
19 pandemic magnified these concerns as consumers increasingly purchased products 
online, where prices are often determined and monitored by computer algorithms. 
Although the use of algorithms to monitor and set prices has increased considerably 
over time, it remains empirically unclear whether algorithmic pricing threatens or 
benefits market competition. Regardless, lawyers are likely to see regulators apply 
increased scrutiny where algorithmic pricing is used, resulting in disputes over the 
effects of algorithmic pricing on markets.

This article explains algorithmic pricing and provides an economic perspective on 
the potential for algorithmic pricing to facilitate horizontal price fixing, vertical price 
fixing, and price discrimination. The article also explains the ways in which algorithmic 
pricing may in fact enhance competition and consumer welfare.
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What is Algorithmic Pricing?
Algorithmic pricing simply means a set of prices determined by a pre-specified set of 
pricing rules or strategies. Companies have long relied on pricing rules or strategies 
to guide pricing decisions across business cycles or based on changes in input prices, 
the prices charged by competitors, or other changes in market conditions. Over time, 
however, the term algorithmic pricing has been increasingly used to refer specifically 
to the use of computers to implement a pricing strategy by automatically setting prices 
without (or with minimal) manual price setting.

Algorithmic pricing has the potential to improve competition and market efficiency. 
As more commerce shifts to online spaces where price comparisons tend to be relatively 
easy, it has become easier and cheaper for a firm’s pricing algorithm to monitor the 
prices of suppliers, competitors, and distributors, and to dynamically optimize prices 
based on supply and demand forecasts.2 Additionally, with the increased prevalence of 
free consumer-facing products that can automatically monitor prices across sellers,3 
firms that use algorithmic pricing to offer the most competitive prices can more easily 
attract customer attention via their lower prices.

However, algorithmic pricing also has its limitations. In one well-known example, 
two competing online retailers selling on Amazon Marketplace offered a new version 
of a commonly referenced biology textbook for approximately $20 million, although 
used copies were available for under $40.4 These high prices were the result of two 
independent algorithmic pricing strategies that each determined sales price based on 
the price offered by the other competitor, leading to prices that precluded sales from 
both retailers. This example highlights the difficulty of designing profitable algorithmic 
pricing strategies that account for all possible contingencies that firms face in a market.

Algorithmic Pricing and Horizontal Price-Fixing
Horizontal price-fixing occurs when two or more competitors agree upon a pricing 
strategy. Firms can increase profits by colluding on a horizontal price-fixing scheme that 
results in higher prices. Successful collusion typically requires complex coordination on 
both a collusive pricing strategy and the consequences of deviating from that pricing 
strategy.5

Recent growth in public awareness of technology-related issues such as data privacy, 
predictive algorithms, and targeted marketing has raised questions from regulators, 
policymakers, and litigators as to whether firms could use algorithmic pricing to 
establish and maintain a collusive strategy with or without explicit communication 
and coordination.6 According to some, modern antitrust concerns are “shifting from the 
world where executives expressly collude in smoke-filled rooms to a world where pricing 
algorithms continually monitor and adjust to each other’s prices and market data.”7

Algorithmic pricing has different potential impacts on explicit and tacit forms of 
collusion.
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Explicit Collusion. For firms that establish a collusive pricing strategy and 
consequences through explicit agreement (i.e., explicit collusion), algorithmic pricing 
could make it easier for colluders to automatically adjust prices as expected demand 
changes and to quickly detect and punish deviations from the collusive pricing 
strategy without explicit communication (e.g., by reverting to a competitive pricing 
strategy).8 Algorithmic pricing thus could, in theory, reduce the need for individuals 
in firms to communicate in order to maintain a previously coordinated collusive 
strategy, which might reduce the evidence available to prove the existence of collusion.9 
Importantly, regardless of the impact on evidence of subsequent communications, the 
choice to collude in such circumstances would be explicit, and evidence of the initial 
communication establishing the explicit collusive arrangement would remain an 
important piece of the case.

Tacit Collusion. As a general matter, both U.S. and E.U. statutes require an explicit 
agreement between the parties to support a finding of horizontal price-fixing.10 But 
lawyers and economists recently have debated whether algorithmic pricing could be 
used to establish a successful collusive strategy without any explicit agreement (i.e., tacit 
collusion), which could be difficult or impossible for regulators or market participants 
to prove.11 If algorithms can autonomously coordinate, some fear that firms may collude 
and “leave no trace of concerted action.”12

Most studies to date suggest that it is hard to achieve collusive outcomes 
spontaneously through pricing algorithms. For example, a 2018 review of computer 
science and economics literature suggests that implicit collusion among autonomous 
algorithms or artificial intelligences is not a practical concern given the complexity 
of colluding among more than two firms and the limited capabilities of algorithmic 
communication.13 A new study was able to demonstrate that algorithmic pricing 
powered by artificial intelligence can result in sophisticated collusive strategies in a 
variety of simulated environments.14 However, findings from a recent working paper 
indicate that the likelihood of collusion in these simulations drops considerably as 
the number of competitors increases or as the ability of these artificial intelligence 
algorithms to learn becomes more sophisticated.15 These results suggest that it is 
unlikely that pricing algorithms will be able to sustain collusive prices in markets with 
entry over time. Although evidence of autonomous algorithmic pricing collusion is 
rooted mostly in theory and computer simulations rather in real-world examples,16 
preliminary evidence from the German retail gasoline market suggests that some 
markets that rely on algorithmic pricing may already have experienced a gradual 
increase in margins due to tacit collusion.17

This suggests that, for the time being, the question of intention—and the evidence 
surrounding that intention—would likely be central to any algorithmic collusion case, in 
addition to an analysis of prices and output, as well as any effects on innovation. Given 
the increasing pace of progress in artificial intelligence, the ability of pricing algorithms 
to tacitly collude is sure to be a subject of continued study and debate.18
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Algorithmic Pricing and Vertical Price-Fixing
Vertical price-fixing occurs when a supplier specifies the prices at which its products can 
be resold to customers by distributors. The most commonly used mechanism for vertical 
price-fixing is resale price maintenance (RPM), whereby suppliers and distributors 
come to an understanding that restricts the prices that distributors can charge.19 Unlike 
horizontal price-fixing, which is generally viewed as having anticompetitive effects, RPM 
is recognized to have both procompetitive and anticompetitive justifications.20

Algorithmic pricing—a concept not even mentioned in the 2008 Organisation 
for Economic Co-operation and Development (OECD) Policy Roundtable on RPM21—
is now garnering increased attention from regulators in connection with RPM. In 
a recent enforcement matter, the U.K.’s Competition and Markets Authority (CMA) 
recognized that both sellers and distributors can monitor prices with algorithms to 
help enforce RPM arrangements.22 Suppliers can use algorithmic price monitoring to 
identify deviations from RPM arrangements that have been set implicitly or explicitly, 
which can lower the cost that suppliers must incur to enforce their RPM arrangements. 
Distributors can use algorithmic price monitoring to inform supplier if competitors 
deviate from RPM arrangements and can use algorithmic pricing to match competitors’ 
prices.23

Although algorithmic price monitoring has made RPM easier for suppliers to enforce, 
the effects on competition remain unclear. Currently, there is insufficient empirical 
evidence to determine whether algorithms are more likely to be used to enforce 
anticompetitive or procompetitive instances of RPM. However, future disputes involving 
RPM likely will give the impression that algorithms are being used for anticompetitive 
purposes. As some have noted, RPM disputes are more likely to reflect instances of RPM 
that have anticompetitive effects on net.24 Additionally, the use of algorithmic pricing 
has increased across retailers. Algorithms do not change the incentives for retailers to 
report arrangements to regulators or to litigate where the effects are anticompetitive. 
As a result, any increase in RPM lawsuits that involve algorithmic pricing or algorithmic 
price monitoring does not necessarily indicate that algorithms are more likely to be 
associated with anticompetitive uses of RPM.

Regardless of their competitive effects, it is fair to expect that algorithmic pricing 
and algorithmic price monitoring will make RPM the subject of greater scrutiny going 
forward.25
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Algorithmic Pricing and Price Discrimination
Price discrimination is a practice whereby firms charge different prices for the same 
product to disparate customer segments for reasons unrelated to costs. For example, 
movie theaters discount tickets for seniors, and airlines discount advance-purchase 
tickets that are more often purchased for vacation travel.26 Algorithmic pricing can 
facilitate price discrimination by helping firms identify a customer’s willingness to pay.27 
For example, certain online retailers may use algorithms that price based on an estimate 
of the customer’s physical distance from rival brick-and-mortar stores.

As algorithms become more sophisticated, they may be able to predict consumer 
preferences with increasing accuracy. If consumer perceptions are subject to common 
cognitive biases—such as overestimating the frequency of use of a product and thereby 
the benefits of that product—algorithms that price discriminate based on these 
perceptions could reduce efficiency.28

In competitive markets where firms have roughly equal access to consumer data, 
however, consumers could benefit from algorithmic pricing that treats “each consumer 
[as] a market in its own right.”29 Indeed, price discrimination could improve efficiency by 
providing lower prices to customers who might not participate in the market otherwise, 
increasing total surplus. In practice, algorithmic price discrimination that relies on 
consumer-specific information can be difficult to implement, as it requires sophisticated 
programming and substantial computing power that provides consumer-specific prices 
as quickly as a website loads. Furthermore, as consumers learn that their browser’s 
digital footprint may invite sellers to offer them higher prices than some unknown 
consumer, they may adopt privacy tools or rely on third-party apps that help disguise 
customer attributes. 

Some have noted that, along with the benefits of using algorithms to efficiently price 
to customers, systemic biases codified in algorithmic pricing could raise questions of 
fairness.30 For example, biases in the programming of algorithms or in the outcome of 
such coding may lead to unintended disparate impact.31 However, decisions made by a 
pricing algorithm are more transparent than those made by humans, as algorithmic 
pricing strategies can be scrutinized and investigated in artificial environments without 
resistance from the algorithm. And a well-designed algorithm can help adjust for known 
biases in human judgment.32 Some researchers have already proposed approaches to 
quantifying disparate impact in pricing algorithms.33 Presumably, resolving biases in a 
pricing algorithm could be easier to address than resolving human biases.

There can be efficiencies to using algorithms to implement the long-standing 
practice of price discrimination. Understanding the competitive effects of algorithmic 
pricing, however, requires careful consideration of market outcomes with and without 
algorithms.
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Conclusion
Regulators, policymakers, lawyers, and economists alike are interested in the 
competitive effects of pricing algorithms. Algorithmic pricing provides many benefits, 
such as reducing costs of pricing decisions, price monitoring, and incorporating 
information on variations in supply and demand. Whether pricing algorithms facilitate 
collusion or lead to reduced consumer welfare remains an open empirical question. 
Ultimately, the answer to this empirical question will depend critically on the intention 
and actions of the competitors, the structure of the algorithms, and the net effect on 
prices, output, and innovation. Although traditional tools of competition policy have 
been capable of dealing with cases to date involving algorithmic pricing, it remains 
uncertain whether algorithmic pricing poses new challenges to competition policy.
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